'Can one hear the shape of a drum?': Revisited

Y. Okada*, A. Shudo, S. Tasaki, T. Harayama

*この研究の対応する著者

研究成果: Article査読

16 被引用数 (Scopus)

抄録

A famous inverse problem posed by M Kac 'Can one hear the shape of a drum?' is concerned with isospectrality of drums or planer billiards, and the first counter example was constructed by Gordon, Webb and Wolpert (1992 Invent. Math. 110 1). Here we present pieces of numerical evidence showing that 'One can distinguish isospectral drums by measuring the scattering poles of exterior Neumann problems'. This is based on the observation that the Fredholm determinant appearing in the boundary element method admits a factorization into interior and exterior parts.

本文言語English
ページ(範囲)L163-L170
ジャーナルJournal of Physics A: Mathematical and General
38
9
DOI
出版ステータスPublished - 2005 3月 4
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)

フィンガープリント

「'Can one hear the shape of a drum?': Revisited」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル