抄録
Reversible jump Markov chain Monte Carlo (RJMCMC) methods are used to fit Bayesian capture-recapture models incorporating heterogeneity in individuals and samples. Heterogeneity in capture probabilities comes from finite mixtures and/or fixed sample effects allowing for interactions. Estimation by RJMCMC allows automatic model selection and/or model averaging. Priors on the parameters stabilize the estimates and produce realistic credible intervals for population size for overparameterized models, in contrast to likelihood-based methods. To demonstrate the approach we analyze the standard Snowshoe hare and Cottontail rabbit data sets from ecology, a reliability testing data set.
本文言語 | English |
---|---|
ページ(範囲) | 644-655 |
ページ数 | 12 |
ジャーナル | Biometrics |
巻 | 66 |
号 | 2 |
DOI | |
出版ステータス | Published - 2010 6月 |
ASJC Scopus subject areas
- 統計学および確率
- 生化学、遺伝学、分子生物学(全般)
- 免疫学および微生物学(全般)
- 農業および生物科学(全般)
- 応用数学