Capture-recapture estimation using finite mixtures of arbitrary dimension

Richard Arnold*, Yu Hayakawa, Paul Yip

*この研究の対応する著者

研究成果: Article査読

15 被引用数 (Scopus)

抄録

Reversible jump Markov chain Monte Carlo (RJMCMC) methods are used to fit Bayesian capture-recapture models incorporating heterogeneity in individuals and samples. Heterogeneity in capture probabilities comes from finite mixtures and/or fixed sample effects allowing for interactions. Estimation by RJMCMC allows automatic model selection and/or model averaging. Priors on the parameters stabilize the estimates and produce realistic credible intervals for population size for overparameterized models, in contrast to likelihood-based methods. To demonstrate the approach we analyze the standard Snowshoe hare and Cottontail rabbit data sets from ecology, a reliability testing data set.

本文言語English
ページ(範囲)644-655
ページ数12
ジャーナルBiometrics
66
2
DOI
出版ステータスPublished - 2010 6月

ASJC Scopus subject areas

  • 統計学および確率
  • 生化学、遺伝学、分子生物学(全般)
  • 免疫学および微生物学(全般)
  • 農業および生物科学(全般)
  • 応用数学

フィンガープリント

「Capture-recapture estimation using finite mixtures of arbitrary dimension」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル