抄録
We analysed isotopic compositions of metamorphic microdiamond secondary ion mass spectrometry. Typical microdiamonds in this dolomite marble show star-shaped morphologies (S-type) consisting of single-crystal cores and polycrystalline rims. Four S-type microdiamonds and two R-type microdiamonds (single crystals with rugged surfaces) were analysed using a 5 μm diameter ion beam. S-type microdiamonds have heterogeneous carbon isotopic compositions even in a single grain. Analysis of a typical S-type microdiamond (no. xx01-1-13) revealed clear difference in δ13C between core and rim. The rim shows lighter isotopic compositions ranging from -17.2% to -26.9%, whereas the core is much heavier, with δ13C ranging from -9.3% to -13.0%. The δ13C values of R-type microdiamonds fall into narrow ranges from -8.3% to -14.9% for no. xx01-1-10 and from -8.3% to -15.3% for no. xx01-1-16. These δ13C values are similar to those of the S-type microdiamond cores. The R-type probably formed at the same stage as the core of the S-type, whereas rim growth at a second stage did not occur or occurred very weakly in R-type microdiamonds. These carbon isotopic data support the two-stage growth of microdiamonds in the Kokchetav ultrahigh-pressure host rock. To explain the second stage growth of S-type microdiamonds, we postulate a simple fluid infiltration of light carbon from neighbouring gneisses into the dolomite marble.
本文言語 | English |
---|---|
ページ(範囲) | 453-467 |
ページ数 | 15 |
ジャーナル | International Geology Review |
巻 | 55 |
号 | 4 |
DOI | |
出版ステータス | Published - 2013 3月 1 |
ASJC Scopus subject areas
- 地質学