TY - JOUR
T1 - Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response
AU - Shiba, Kogiku
AU - Baba, Shoji A.
AU - Inoue, Takafumi
AU - Yoshida, Manabu
PY - 2008/12/9
Y1 - 2008/12/9
N2 - Ca2+ is known to have important roles in sperm chemotaxis, although the relationship between intracellular Ca2+ concentration ([Ca2+]i) and modulation of the swimming and chemotactic behavior of spermatozoa has not been elucidated. Using a high-speed Ca 2+ imaging system, we examined the chemotactic behavior and [Ca 2+]i in individual ascidian sperm cells exhibiting chemotactic responses toward sperm activating and attracting factor (SAAF), a chemoattractant released by eggs. In this study, we found that transient [Ca2+]i increased in the flagellum (Ca2+ bursts) concomitantly with a change in the swimming direction in an SAAF gradient field. During the initial phase of the Ca2+ bursts, the flagellum of the spermatozoon exhibited highly asymmetric waveforms enabling the quick turning of the swimming path. However, the flagellum subsequently changed to symmetric beating, causing the spermatozoon to swim straight. Interestingly, during such responses, [Ca2+]i remained higher than the basal level, indicating that the series of responses was not simply determined by Ca2+ concentrations. Also, we found that Ca2+ bursts were consistently evoked at points at which the spermatozoon attained around a temporally minimal value for a given SAAF concentration. We concluded that Ca2+ bursts induced around a local minimal SAAF concentration trigger a sequence of flagellar responses comprising quick turning followed by straight swimming to direct spermatozoa efficiently toward eggs.
AB - Ca2+ is known to have important roles in sperm chemotaxis, although the relationship between intracellular Ca2+ concentration ([Ca2+]i) and modulation of the swimming and chemotactic behavior of spermatozoa has not been elucidated. Using a high-speed Ca 2+ imaging system, we examined the chemotactic behavior and [Ca 2+]i in individual ascidian sperm cells exhibiting chemotactic responses toward sperm activating and attracting factor (SAAF), a chemoattractant released by eggs. In this study, we found that transient [Ca2+]i increased in the flagellum (Ca2+ bursts) concomitantly with a change in the swimming direction in an SAAF gradient field. During the initial phase of the Ca2+ bursts, the flagellum of the spermatozoon exhibited highly asymmetric waveforms enabling the quick turning of the swimming path. However, the flagellum subsequently changed to symmetric beating, causing the spermatozoon to swim straight. Interestingly, during such responses, [Ca2+]i remained higher than the basal level, indicating that the series of responses was not simply determined by Ca2+ concentrations. Also, we found that Ca2+ bursts were consistently evoked at points at which the spermatozoon attained around a temporally minimal value for a given SAAF concentration. We concluded that Ca2+ bursts induced around a local minimal SAAF concentration trigger a sequence of flagellar responses comprising quick turning followed by straight swimming to direct spermatozoa efficiently toward eggs.
KW - Ascidian
KW - Calcium
KW - Chemotaxis
KW - Fertilization
KW - Flagella
UR - http://www.scopus.com/inward/record.url?scp=58049202801&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58049202801&partnerID=8YFLogxK
U2 - 10.1073/pnas.0808580105
DO - 10.1073/pnas.0808580105
M3 - Article
C2 - 19047630
AN - SCOPUS:58049202801
SN - 0027-8424
VL - 105
SP - 19312
EP - 19317
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 49
ER -