TY - JOUR
T1 - Cell-sorting system with on-chip imaging for label-free shape-based selection of cells
AU - Terazono, Hideyuki
AU - Hayashi, Masahito
AU - Kim, Hyonchol
AU - Hattori, Akihiro
AU - Yasuda, Kenji
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012/6
Y1 - 2012/6
N2 - We have developed a novel cell-sorting system involving microscopic imaging using a poly(methyl methacrylate) (PMMA)-based microfluidic chip with a pair of gel electrodes and real-time image-processing procedures for the quantification of cell shapes. The features of this system are as follows. 1) It can recognize cells both by microscopic cell imaging with a 10,000 event/s high-speed camera and by the photodetection of fluorescence. 2) Multistage sorting is used to reduce errors to an infinitesimally low level by using a pair of wide agarose-gel electrodes. 3) Carryoverfree analysis can be performed using a disposable microfluidic chip. 4) An field programmable gate array (FPGA) 10,000 event/s real-time image analysis unit for quantifying the cell images in cell sorting. To separate the target cells from other cells on the basis of the cell shape, we adopted an index of roughness for the cell surface R, which compares the actual perimeter of cell surface and the estimated perimeter of crosssectional view of cell shape by approximating the cell as a sphere. Sample cells flowing through microchannels on the chip were distinguished by the dual recognition system involving optical analysis and a fluorescence detector, and then separated. Target cells could be sorted automatically by applying an electrophoretic force, and the sorting ability depended on the precision with which cells were shifted within the laminar flow. These results indicate that the cell-sorting system with on-chip imaging is practically applicable for biological research and clinical diagnostics.
AB - We have developed a novel cell-sorting system involving microscopic imaging using a poly(methyl methacrylate) (PMMA)-based microfluidic chip with a pair of gel electrodes and real-time image-processing procedures for the quantification of cell shapes. The features of this system are as follows. 1) It can recognize cells both by microscopic cell imaging with a 10,000 event/s high-speed camera and by the photodetection of fluorescence. 2) Multistage sorting is used to reduce errors to an infinitesimally low level by using a pair of wide agarose-gel electrodes. 3) Carryoverfree analysis can be performed using a disposable microfluidic chip. 4) An field programmable gate array (FPGA) 10,000 event/s real-time image analysis unit for quantifying the cell images in cell sorting. To separate the target cells from other cells on the basis of the cell shape, we adopted an index of roughness for the cell surface R, which compares the actual perimeter of cell surface and the estimated perimeter of crosssectional view of cell shape by approximating the cell as a sphere. Sample cells flowing through microchannels on the chip were distinguished by the dual recognition system involving optical analysis and a fluorescence detector, and then separated. Target cells could be sorted automatically by applying an electrophoretic force, and the sorting ability depended on the precision with which cells were shifted within the laminar flow. These results indicate that the cell-sorting system with on-chip imaging is practically applicable for biological research and clinical diagnostics.
UR - http://www.scopus.com/inward/record.url?scp=84863327572&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863327572&partnerID=8YFLogxK
U2 - 10.1143/JJAP.51.06FK08
DO - 10.1143/JJAP.51.06FK08
M3 - Article
AN - SCOPUS:84863327572
SN - 0021-4922
VL - 51
JO - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
JF - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
IS - 6 PART 2
M1 - 06FK08
ER -