CENSREC-2-AV: An evaluation framework for bimodal speech recognition in real environments

Naoya Ukai*, Takuya Kawasaki, Satoshi Tamura, Satoru Hayamizu, Chiyomi Miyajima, Norihide Kitaoka, Kazuya Takeda

*この研究の対応する著者

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

In this paper, we introduce a bimodal speech recognition corpus in real environments. In recent years, speech recognition technology has been used in noisy conditions. Therefore, it becomes necessary to achieve higher recognition accuracy in real environments. As one of the solutions, bimodal speech recognition using audio and non-audio information is getting studied. However, there are few databases which can be used to evaluate the bimodal speech recognition in real environments. In this paper, we introduce CENSREC-2-AV we have been working to built, as a new bimodal speech recognition corpus. CENSREC-2-AV is one of the databases of the CEN-SREC project; we provided a similar corpus CENSREC-1-AV as a database for bimodal speech recognition for additive noises. In these corpora, there are speech data and lip images. Researchers can evaluate a bimodal speech recognition method built using CENSREC-1-AV which consists of clean data, in real environments by using CENSREC-2-AV.

本文言語English
ホスト出版物のタイトルProceedings of the 2012 International Conference on Speech Database and Assessments, Oriental COCOSDA 2012
ページ88-91
ページ数4
DOI
出版ステータスPublished - 2012
外部発表はい
イベント2012 15th International Conference on Speech Database and Assessments, Oriental COCOSDA 2012 - Macau, China
継続期間: 2012 12月 92012 12月 12

出版物シリーズ

名前Proceedings of the 2012 International Conference on Speech Database and Assessments, Oriental COCOSDA 2012

Conference

Conference2012 15th International Conference on Speech Database and Assessments, Oriental COCOSDA 2012
国/地域China
CityMacau
Period12/12/912/12/12

ASJC Scopus subject areas

  • ソフトウェア
  • 言語聴覚療法

フィンガープリント

「CENSREC-2-AV: An evaluation framework for bimodal speech recognition in real environments」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル