TY - GEN
T1 - Changes in mechanical properties of heat resisting alloy for a satellite propulsion system after a nitriding process
AU - Kagawa, Hideshi
AU - Fujii, Go
AU - Kajiwara, Kenichi
AU - Kuroda, Daisuke
AU - Suzuki, Takuya
AU - Yamabe-Mitarai, Yoko
AU - Murakami, Hideyuki
AU - Ono, Yoshinori
PY - 2012
Y1 - 2012
N2 - Haynes25 (L-605) is a common heat resistant alloy used in mono-propellant structures and screen materials for catalyst beds. The lifetime requirements for thrusters have expanded dramatically after studies conducted in the 1970s on mono-propellant materials used to extend the service life. The material design had long remained unchanged, and the L-605 was still used as thruster material due to its good heritage. However, some important incidents involving degradation were found during the test-unit break-up inspection following the thruster life tests. The Japanese research team focused on the L-605 degradations found on the catalyst bed screen mesh used for mono-propellant thruster and analysed the surface of the wire material and the cross-section of the wire screen mesh used in the life tests. The investigation showed that the degradation was caused by nitriding L-605 component elements. The team suggested that the brittle fracture was attributable to tungsten (W) carbides, which formed primarily in the grain boundaries, and chromium (Cr) nitride, which formed mainly in the parts in contact with the hot firing gas. The team also suggested the installation of a platinum coating on the material surface as a countermeasure L-605 nitric degradation. Inconel 625 is now selected as a mono-propellant structure material due to its marginal raw material characters and cost. The team believes that Inconel 625 does not form W carbides since it contains no tungsten component, but does contain Cr and Fe, which form nitrides easily. Therefore, the team agreed that for the Inconel 625, there was a need to evaluate changes in the microstructure and mechanical properties following exposure to hot nitrogen gases. This paper will describe these changes of Inconel 625.
AB - Haynes25 (L-605) is a common heat resistant alloy used in mono-propellant structures and screen materials for catalyst beds. The lifetime requirements for thrusters have expanded dramatically after studies conducted in the 1970s on mono-propellant materials used to extend the service life. The material design had long remained unchanged, and the L-605 was still used as thruster material due to its good heritage. However, some important incidents involving degradation were found during the test-unit break-up inspection following the thruster life tests. The Japanese research team focused on the L-605 degradations found on the catalyst bed screen mesh used for mono-propellant thruster and analysed the surface of the wire material and the cross-section of the wire screen mesh used in the life tests. The investigation showed that the degradation was caused by nitriding L-605 component elements. The team suggested that the brittle fracture was attributable to tungsten (W) carbides, which formed primarily in the grain boundaries, and chromium (Cr) nitride, which formed mainly in the parts in contact with the hot firing gas. The team also suggested the installation of a platinum coating on the material surface as a countermeasure L-605 nitric degradation. Inconel 625 is now selected as a mono-propellant structure material due to its marginal raw material characters and cost. The team believes that Inconel 625 does not form W carbides since it contains no tungsten component, but does contain Cr and Fe, which form nitrides easily. Therefore, the team agreed that for the Inconel 625, there was a need to evaluate changes in the microstructure and mechanical properties following exposure to hot nitrogen gases. This paper will describe these changes of Inconel 625.
UR - http://www.scopus.com/inward/record.url?scp=84871054052&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871054052&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84871054052
SN - 9789290922551
T3 - European Space Agency, (Special Publication) ESA SP
BT - Proceedings of 12th European Conference on Spacecraft Structures, Materials and Environmental Testing
T2 - 12th European Conference on Spacecraft Structures, Materials and Environmental Testing
Y2 - 20 March 2012 through 23 March 2012
ER -