抄録
Chaotic behaviors are characterized mainly by Lyapunov numbers of a dynamic system. In this paper, a new method is proposed, which can control the maximum Lyapunov number of dynamic system that can be represented by Universal Learning Networks (ULNs). The maximum Lyapunov number of a dynamic system can be formulated by using higher order derivatives of ULNs and parameters of ULNs can be adjusted for the maximum Lyapunov number to approach to the target value by the combined gradient and random search method. Based on simulation results, a fully connected ULN with three nodes is possible to display chaotic behaviors.
本文言語 | English |
---|---|
ページ(範囲) | 1702-1707 |
ページ数 | 6 |
ジャーナル | Proceedings of the IEEE International Conference on Systems, Man and Cybernetics |
巻 | 2 |
出版ステータス | Published - 1998 12月 1 |
外部発表 | はい |
イベント | Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics. Part 2 (of 5) - San Diego, CA, USA 継続期間: 1998 10月 11 → 1998 10月 14 |
ASJC Scopus subject areas
- 制御およびシステム工学
- ハードウェアとアーキテクチャ