TY - JOUR
T1 - Chelation of transition metal ions by peptide nanoring
AU - Kihara, Shuichiro
AU - Takagi, Hiroyuki
AU - Takechi, Kazumasa
AU - Takeda, Kyozaburo
PY - 2008/6/26
Y1 - 2008/6/26
N2 - We have computationally studied the energetics and electronic structures of a chelate system where the guest cation is a transition metal (TM) and the host ligand is a peptide nanoring (PNR). The trapping of a TM cation by a cyclic peptide skeleton is primarily caused by the electrostatic interaction. The exchange interaction plays a secondary role in determining the relative stability in accordance with the spin multiplicity. An interesting feature of this chelate system is that a TM cation can also be trapped by the side-chain aromatic groups of the PNR via π-d hybridization. However, the spin multiplicity of the system changes the trapped form. When the chelate system has spin singlet multiplicity, a Fe2+ cation, for example, is not trapped by the single-phenyl group but is preferentially sandwiched by the two phenyl groups. In contrast, a Fe2+ cation can be trapped by single as well as by double-phenyl groups when the chelate system has higher spin multiplicity, such as triplet and quintet. These two different trapping forms are caused by the difference in the number of valence electrons of TM cations. For this chelate system, the newly occupied molecular orbital (MO) has an interbenzene antibonding character. Therefore, an electron occupying this MO state favors the mutual separation of two benzene molecules. Because the electron occupation of this MO varies in accordance with the spin multiplicity, one can predict the preference for the single-phenyl-group trapping process rather than the double-phenyl-group process systematically as well as consistently.
AB - We have computationally studied the energetics and electronic structures of a chelate system where the guest cation is a transition metal (TM) and the host ligand is a peptide nanoring (PNR). The trapping of a TM cation by a cyclic peptide skeleton is primarily caused by the electrostatic interaction. The exchange interaction plays a secondary role in determining the relative stability in accordance with the spin multiplicity. An interesting feature of this chelate system is that a TM cation can also be trapped by the side-chain aromatic groups of the PNR via π-d hybridization. However, the spin multiplicity of the system changes the trapped form. When the chelate system has spin singlet multiplicity, a Fe2+ cation, for example, is not trapped by the single-phenyl group but is preferentially sandwiched by the two phenyl groups. In contrast, a Fe2+ cation can be trapped by single as well as by double-phenyl groups when the chelate system has higher spin multiplicity, such as triplet and quintet. These two different trapping forms are caused by the difference in the number of valence electrons of TM cations. For this chelate system, the newly occupied molecular orbital (MO) has an interbenzene antibonding character. Therefore, an electron occupying this MO state favors the mutual separation of two benzene molecules. Because the electron occupation of this MO varies in accordance with the spin multiplicity, one can predict the preference for the single-phenyl-group trapping process rather than the double-phenyl-group process systematically as well as consistently.
UR - http://www.scopus.com/inward/record.url?scp=48149089019&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=48149089019&partnerID=8YFLogxK
U2 - 10.1021/jp800367c
DO - 10.1021/jp800367c
M3 - Article
C2 - 18528971
AN - SCOPUS:48149089019
SN - 1089-5647
VL - 112
SP - 7631
EP - 7644
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 25
ER -