TY - JOUR
T1 - Chemical composition of the Kobe meteorite
T2 - Neutron-induced prompt gamma ray analysis study
AU - Oura, Y.
AU - Ebihara, M.
AU - Yoneda, S.
AU - Nakamura, N.
PY - 2002
Y1 - 2002
N2 - Neutron-induced prompt gamma ray analysis (PGA) was applied to several lump samples of the Kobe meteorites, along with powdered sample and separated chondrules, and a total of 15 elements (H, B, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Mn, Fe, Co and Ni) were determined non-destructively. Except for chondrule samples, uniformity in chemical composition is remarkable for most elements. Exceptions are B and Cl, which appear to be heterogeneously distributed in the Kobe meteorite. Comparing Mg/Si, Al/Si, Ca/Si and Ti/Si ratios among carbonaceous chondrites (CI, CM, CV, CO and CK), CK chondrites are characterized by the highest Mg/Si ratio. Abundances of S and Zn were observed to coincidently change among carbonaceous chondrites, as suggested by similar condensation temperatures. Boron abundances in CK are even lower than those for S and Zn, being contrary to the prediction from thermodynamic calculation. For the classification of carbonaceous chondrites, we propose a S/Mn vs. Al/Mn diagram, on which individual groups of Cl, CM, CV, CO and CK cluster with discrete locality. These three key elements are all determined for voluminous and irregularly shaped chondrite samples by PGA, showing that PGA has a great merit in analyzing new fall meteorites like Kobe.
AB - Neutron-induced prompt gamma ray analysis (PGA) was applied to several lump samples of the Kobe meteorites, along with powdered sample and separated chondrules, and a total of 15 elements (H, B, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Mn, Fe, Co and Ni) were determined non-destructively. Except for chondrule samples, uniformity in chemical composition is remarkable for most elements. Exceptions are B and Cl, which appear to be heterogeneously distributed in the Kobe meteorite. Comparing Mg/Si, Al/Si, Ca/Si and Ti/Si ratios among carbonaceous chondrites (CI, CM, CV, CO and CK), CK chondrites are characterized by the highest Mg/Si ratio. Abundances of S and Zn were observed to coincidently change among carbonaceous chondrites, as suggested by similar condensation temperatures. Boron abundances in CK are even lower than those for S and Zn, being contrary to the prediction from thermodynamic calculation. For the classification of carbonaceous chondrites, we propose a S/Mn vs. Al/Mn diagram, on which individual groups of Cl, CM, CV, CO and CK cluster with discrete locality. These three key elements are all determined for voluminous and irregularly shaped chondrite samples by PGA, showing that PGA has a great merit in analyzing new fall meteorites like Kobe.
UR - http://www.scopus.com/inward/record.url?scp=0036059696&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036059696&partnerID=8YFLogxK
U2 - 10.2343/geochemj.36.295
DO - 10.2343/geochemj.36.295
M3 - Article
AN - SCOPUS:0036059696
SN - 0016-7002
VL - 36
SP - 295
EP - 307
JO - GEOCHEMICAL JOURNAL
JF - GEOCHEMICAL JOURNAL
IS - 4
ER -