Chiral alkylated poly(m-phenylene)s: Optical activity and thermal stability of helical structures

Risa Sone, Ichiro Takemura, Kenichi Oyaizu, Hiroyuki Nishide*


研究成果: Article査読

5 被引用数 (Scopus)


Chiral poly[4,6-bis(alkylthio)-1,3-phenylene-alt-2-methyl-1,3-phenylene] was synthesized from 1,3-dibromo-2,6-bis(3-dodecyl-2-methylthio)benzene and 2-methyl-1,3-phenylenebis(pinacol borate) as a precursor of chiral poly(thiaheterohelicene). Circular dichroism (CD) spectra that arise from the poly(1,3-phenylene) backbone inverted according to the chirality of the side chains, which indicated that a helical conformation of the polymer was induced by the interaction between the side chains. The CD intensity of the polymer increased in non-polar solvents such as hexane. The decrease in the molar CD intensity and the broadening of a fluorescence band at higher concentrations suggested that the aggregation of the polymer suppressed the formation of the helical structure. The conformational changes were monitored by the CD and the 1H NMR spectra at different temperatures. In a good solvent such as dichloromethane, the CD intensity increased, and the 1H NMR signal of benzene protons shifted to lower fields at low temperatures. In hexane, the CD spectra and the 1H NMR signals were less dependent on temperatures, as a result of the strong interaction between the chiral alkyl chains in the polymer to freeze the helical conformation.

ジャーナルSynthetic Metals
出版ステータスPublished - 2009 5月

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • 材料力学
  • 機械工学
  • 金属および合金
  • 材料化学


「Chiral alkylated poly(m-phenylene)s: Optical activity and thermal stability of helical structures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。