Classical provability of uniform versions and intuitionistic provability

Makoto Fujiwara*, Ulrich Kohlenbach

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Along the line of Hirst-Mummert and Dorais , we analyze the relationship between the classical provability of uniform versions Uni(S) of Π2-statements S with respect to higher order reverse mathematics and the intuitionistic provability of S. Our main theorem states that (in particular) for every Π2-statement S of some syntactical form, if its uniform version derives the uniform variant of ACA over a classical system of arithmetic in all finite types with weak extensionality, then S is not provable in strong semi-intuitionistic systems including bar induction BI in all finite types but also nonconstructive principles such as Konig's lemma KL and uniform weak Konig's lemma UWKL. Our result is applicable to many mathematical principles whose sequential versions imply ACA.

本文言語English
ページ(範囲)132-150
ページ数19
ジャーナルMathematical Logic Quarterly
61
3
DOI
出版ステータスPublished - 2015 5月 1
外部発表はい

ASJC Scopus subject areas

  • 論理

フィンガープリント

「Classical provability of uniform versions and intuitionistic provability」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル