Classifying community QA questions that contain an image

Kenta Tamaki*, Riku Togashi, Sosuke Kato, Sumio Fujita, Hideyuki Maeda, Tetsuya Sakai

*この研究の対応する著者

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

We consider the problem of automatically assigning a category to a given question posted to a Community Question Answering (CQA) site, where the question contains not only text but also an image. For example, CQA users may post a photograph of a dress and ask the community "Is this appropriate for a wedding?" where the appropriate category for this question might be "Manners, Ceremonial occasions." We tackle this problem using Convolutional Neural Networks with a DualNet architecture for combining the image and text representations. Our experiments with real data from Yahoo Chiebukuro and crowdsourced gold-standard categories show that the DualNet approach outperforms a text-only baseline (p = .0000), a sum-and-product baseline (p = .0000), Multimodal Compact Bilinear pooling (p = .0000), and a combination of sum-and-product and MCB (p = .0000), where the p-values are based on a randomised Tukey Honestly Significant Difference test with B = 5000 trials.

本文言語English
ホスト出版物のタイトルICTIR 2018 - Proceedings of the 2018 ACM SIGIR International Conference on the Theory of Information Retrieval
出版社Association for Computing Machinery, Inc
ページ219-222
ページ数4
ISBN(電子版)9781450356565
DOI
出版ステータスPublished - 2018 9月 10
イベント8th ACM SIGIR International Conference on the Theory of Information Retrieval, ICTIR 2018 - Tianjin, China
継続期間: 2018 9月 142018 9月 17

出版物シリーズ

名前ICTIR 2018 - Proceedings of the 2018 ACM SIGIR International Conference on the Theory of Information Retrieval

Conference

Conference8th ACM SIGIR International Conference on the Theory of Information Retrieval, ICTIR 2018
国/地域China
CityTianjin
Period18/9/1418/9/17

ASJC Scopus subject areas

  • 情報システム
  • コンピュータ サイエンス(その他)

フィンガープリント

「Classifying community QA questions that contain an image」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル