Co-Training Realized Volatility Prediction Model with Neural Distributional Transformation

Xin Du*, Kai Moriyama, Kumiko Tanaka-Ishii

*この研究の対応する著者

研究成果: Conference contribution

抄録

This paper shows a novel machine learning model for realized volatility (RV) prediction using a normalizing flow, an invertible neural network. Since RV is known to be skewed and have a fat tail, previous methods transform RV into values that follow a latent distribution with an explicit shape and then apply a prediction model. However, knowing that shape is non-trivial, and the transformation result influences the prediction model. This paper proposes to jointly train the transformation and the prediction model. The training process follows a maximum-likelihood objective function that is derived from the assumption that the prediction residuals on the transformed RV time series are homogeneously Gaussian. The objective function is further approximated using an expectation-maximum algorithm. On a dataset of 100 stocks, our method significantly outperforms other methods using analytical or naïve neural-network transformations.

本文言語English
ホスト出版物のタイトルICAIF 2023 - 4th ACM International Conference on AI in Finance
出版社Association for Computing Machinery, Inc
ページ418-426
ページ数9
ISBN(電子版)9798400702402
DOI
出版ステータスPublished - 2023 11月 27
イベント4th ACM International Conference on AI in Finance, ICAIF 2023 - New York City, United States
継続期間: 2023 11月 272023 11月 29

出版物シリーズ

名前ICAIF 2023 - 4th ACM International Conference on AI in Finance

Conference

Conference4th ACM International Conference on AI in Finance, ICAIF 2023
国/地域United States
CityNew York City
Period23/11/2723/11/29

ASJC Scopus subject areas

  • 人工知能
  • 財務

フィンガープリント

「Co-Training Realized Volatility Prediction Model with Neural Distributional Transformation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル