Cognitive Workload Detection from Raw EEG-Signals of Vehicle Driver using Deep Learning

Mohammad A. Almogbel*, Anh H. Dang, Wataru Kameyama

*この研究の対応する著者

研究成果: Conference contribution

17 被引用数 (Scopus)

抄録

Electroencephalography (EEG) signals have been proven to be effective in evaluating human's cognitive state under specific tasks. Conventional classification models utilized for EEG classification heavily rely on signal pre-processing and hand-designed features. In this paper, we propose an end-to-end deep neural network which is capable of classifying multiple types of cognitive workload of a vehicle driver and the context of driving using only raw EEG signals as its input without any pre-processing nor the need for conventional hand-designed features. Data used in this study are collected throughout multiple driving sessions conducted on a high-fidelity driving simulator. Experimental results conducted on 4 channels of raw EEG data show that the proposed model is capable of accurately detecting the cognitive workload of a driver and the context of driving.

本文言語English
ホスト出版物のタイトル21st International Conference on Advanced Communication Technology
ホスト出版物のサブタイトルICT for 4th Industrial Revolution!, ICACT 2019 - Proceeding
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1167-1172
ページ数6
ISBN(電子版)9791188428021
DOI
出版ステータスPublished - 2019 4月 29
イベント21st International Conference on Advanced Communication Technology, ICACT 2019 - Pyeongchang, Korea, Republic of
継続期間: 2019 2月 172019 2月 20

出版物シリーズ

名前International Conference on Advanced Communication Technology, ICACT
2019-February
ISSN(印刷版)1738-9445

Conference

Conference21st International Conference on Advanced Communication Technology, ICACT 2019
国/地域Korea, Republic of
CityPyeongchang
Period19/2/1719/2/20

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「Cognitive Workload Detection from Raw EEG-Signals of Vehicle Driver using Deep Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル