Cohomological dimension and acyclic resolutions

Akira Koyama, Katsuya Yokoi*

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Let G be an Abelian group admitting a homomorphism α: ℤ→G such that the induced homomorphisms α⊗id: ℤ⊗G→G⊗G and α*: Hom(G,G)→Hom(ℤ,G) are isomorphisms. We show that for every simplicial complex L there exists an Edwards-Walsh resolution ω: EWG(L,n)→ L . As applications of it we give several resolution theorems. In particular, we have Theorem. Let G be an arbitrary Abelian group. For every compactum X with c-dimGX≤n there exists a G-acyclic map f: Z→X from a compactum Z with dimZ≤n+2 and c-dimGZ≤n+1. Our methods determine other results as well. If the group G is cyclic, then one can obtain Z with dimZ≤n. In certain other cases, depending on G, we may resolve X in such a manner that dimZ≤n+1 and c-dimGZ≤n.

本文言語English
ページ(範囲)175-204
ページ数30
ジャーナルTopology and its Applications
120
1-2
DOI
出版ステータスPublished - 2002 5月 15
外部発表はい

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「Cohomological dimension and acyclic resolutions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル