Cohomological dimension of locally connected compacta

Jerzy Dydak*, Akira Koyama

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

In this paper we investigate the cohomological dimension of cohomologically locally connected compacta with respect to principal ideal domains. We show the cohomological dimension version of the Borsuk-Siecklucki theorem: for every uncountable family {Kα}αεA of n-dimensional closed subsets of an n-dimensional ANR-compactum, there exist α ≠ β such that dim(Kα ∩ Kβ) = n. As its consequences we shall investigate the equality of cohomological dimension and strong cohomological dimension and give a characterization of cohomological dimension by using a special base. Furthermore, we shall discuss the relation between cohomological dimension and dimension of cohomologically locally connected spaces.

本文言語English
ページ(範囲)39-50
ページ数12
ジャーナルTopology and its Applications
113
1-3
DOI
出版ステータスPublished - 2001
外部発表はい

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「Cohomological dimension of locally connected compacta」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル