Collinearity between the Shapley value and the egalitarian division rules for cooperative games

Irinel Dragan, Theo Driessen*, Yukihiko Funaki

*この研究の対応する著者

研究成果: Article査読

6 被引用数 (Scopus)

抄録

For each cooperative n-person game v and each hε{1, 2 . . . . . n}, let νh be the average worth of coalitions of size h and νih the average worth of coalitions of size h which do not contain player iε N. The paper introduces the notion of a proportional average worth game (or PAW-game), i.e., the zero-normalized game v for which there exist numbers chεℝ such that νh- νhi=chn-1-v n-1i) for all hε{2, 3 . . . . , n-1}, and iε N. The notion of average worth is used to prove a formula for the Shapley value of a PAW-game. It is shown that the Shapley value, the value representing the center of the imputation set, the egalitarian nonseparable contribution value and the egalitarian non-average contribution value of a PAW-game are collinear. The class of PAW-games contains strictly the class of k-coalitional games possessing the collinearity property discussed by Driessen and Funaki (1991). Finally, it is illustrated that the unanimity games and the landlord games are PAW-games.

本文言語English
ページ(範囲)97-105
ページ数9
ジャーナルOR Spectrum
18
2
DOI
出版ステータスPublished - 1996
外部発表はい

ASJC Scopus subject areas

  • 経営科学およびオペレーションズ リサーチ

フィンガープリント

「Collinearity between the Shapley value and the egalitarian division rules for cooperative games」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル