Colony fingerprint-based discrimination of staphylococcus species with machine learning approaches

Yoshiaki Maeda, Yui Sugiyama, Atsushi Kogiso, Tae Kyu Lim, Manabu Harada, Tomoko Yoshino, Tadashi Matsunaga, Tsuyoshi Tanaka*

*この研究の対応する著者

研究成果: Article査読

9 被引用数 (Scopus)

抄録

Detection and discrimination of bacteria are crucial in a wide range of industries, including clinical testing, and food and beverage production. Staphylococcus species cause various diseases, and are frequently detected in clinical specimens and food products. In particular, S. aureus is well known to be the most pathogenic species. Conventional phenotypic and genotypic methods for discrimination of Staphylococcus spp. are time-consuming and labor-intensive. To address this issue, in the present study, we applied a novel discrimination methodology called colony fingerprinting. Colony fingerprinting discriminates bacterial species based on the multivariate analysis of the images of microcolonies (referred to as colony fingerprints) with a size of up to 250 µm in diameter. The colony fingerprints were obtained via a lens-less imaging system. Profiling of the colony fingerprints of five Staphylococcus spp. (S. aureus, S. epidermidis, S. haemolyticus, S. saprophyticus, and S. simulans) revealed that the central regions of the colony fingerprints showed species-specific patterns. We developed 14 discriminative parameters, some of which highlight the features of the central regions, and analyzed them by several machine learning approaches. As a result, artificial neural network (ANN), support vector machine (SVM), and random forest (RF) showed high performance for discrimination of theses bacteria. Bacterial discrimination by colony fingerprinting can be performed within 11 h, on average, and therefore can cut discrimination time in half compared to conventional methods. Moreover, we also successfully demonstrated discrimination of S. aureus in a mixed culture with Pseudomonas aeruginosa. These results suggest that colony fingerprinting is useful for discrimination of Staphylococcus spp.

本文言語English
論文番号2789
ジャーナルSensors (Switzerland)
18
9
DOI
出版ステータスPublished - 2018 9月 1

ASJC Scopus subject areas

  • 分析化学
  • 原子分子物理学および光学
  • 生化学
  • 器械工学
  • 電子工学および電気工学

フィンガープリント

「Colony fingerprint-based discrimination of staphylococcus species with machine learning approaches」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル