Comments on the non-stationary chaos

Y. Aizawa*

*この研究の対応する著者

研究成果: Article査読

21 被引用数 (Scopus)

抄録

Non-stationary chaos is a universal phenomenon in non-hyperbolic dynamical systems. Basic problems regarding the non-stationarity are discussed from ergodic-theoretical viewpoints. By use of a simple system, it is shown that `the law of large number' as well as `the law of small number' break down in the non-stationary regime. The non-stationarity in dynamical systems proposes a crucial problem underlying in the transitional region between chance and necessity, where non-observable processes behind reality interplay with observable ones. The incompleteness of statistical ensembles is discussed from the Karamata's theory. Finally, the significance of the stationary/non-stationary interface is emphasized in relation to the universality of 1/f fluctuations.

本文言語English
ページ(範囲)263-268
ページ数6
ジャーナルChaos, Solitons and Fractals
11
1
DOI
出版ステータスPublished - 2000 1月

ASJC Scopus subject areas

  • 統計物理学および非線形物理学

フィンガープリント

「Comments on the non-stationary chaos」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル