Comparison of optical properties of GaN/AlGaN and InGaN/AlGaN single quantum wells

Shigefusa F. Chichibu*, Amane Shikanai, Takahiro Deguchi, Akiko Setoguchi, Rikuro Nakai, Hisayuki Nakanishi, Kazumi Wada, Steven P. DenBaars, Takayuki Sota, Shuji Nakamura

*この研究の対応する著者

研究成果: Article査読

8 被引用数 (Scopus)

抄録

Static, field-modulated and time-resolved spectroscopies were carried out to compare the electronic states between GaN/AlGaN binary and InGaN/AlGaN ternary single quantum wells (SQWs). The internal field that exists across the quantum well (QW) naturally induces a quantum-confined Stark effect (QCSE), namely the redshift of the QW resonance energy and decrease of the electron-hole wavefunction overlap. The GaN/AlGaN SQW exhibited a weak emission due to QCSE. However, optical absorption and degenerate pump-probe measurements revealed that excitonic character was maintained for thin QWs with the well width nearly the same as the bulk free exciton Bohr radius even under an electric field as high as 0.73 MV/cm. A slightly In-alloyed InGaN SQW exhibited a bright luminescence peak in spite of an effective bandgap inhomogeneity in the QW, which was confirmed by the point excitation and monochromatic cathodoluminescence (CL) mapping method. The lateral interval of each light-emitting area was estimated from the spatial resolution of the CL mapping to be smaller than 60 nm. Such local potential minima is considered to be formed due to the presence of a structure similar to quantum-disks [M. Sugawara: Phys. Rev. B 51 (1995) 10743]. Carriers generated in the InGaN QWs are effectively localized in these regions to form localized QW excitons exhibiting highly efficient spontaneous emissions.

本文言語English
ページ(範囲)2417-2424
ページ数8
ジャーナルJapanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers
39
4 B
DOI
出版ステータスPublished - 2000

ASJC Scopus subject areas

  • 工学(全般)
  • 物理学および天文学(全般)

フィンガープリント

「Comparison of optical properties of GaN/AlGaN and InGaN/AlGaN single quantum wells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル