TY - JOUR
T1 - Comparison of optical properties of GaN/AlGaN and InGaN/AlGaN single quantum wells
AU - Chichibu, Shigefusa F.
AU - Shikanai, Amane
AU - Deguchi, Takahiro
AU - Setoguchi, Akiko
AU - Nakai, Rikuro
AU - Nakanishi, Hisayuki
AU - Wada, Kazumi
AU - DenBaars, Steven P.
AU - Sota, Takayuki
AU - Nakamura, Shuji
PY - 2000
Y1 - 2000
N2 - Static, field-modulated and time-resolved spectroscopies were carried out to compare the electronic states between GaN/AlGaN binary and InGaN/AlGaN ternary single quantum wells (SQWs). The internal field that exists across the quantum well (QW) naturally induces a quantum-confined Stark effect (QCSE), namely the redshift of the QW resonance energy and decrease of the electron-hole wavefunction overlap. The GaN/AlGaN SQW exhibited a weak emission due to QCSE. However, optical absorption and degenerate pump-probe measurements revealed that excitonic character was maintained for thin QWs with the well width nearly the same as the bulk free exciton Bohr radius even under an electric field as high as 0.73 MV/cm. A slightly In-alloyed InGaN SQW exhibited a bright luminescence peak in spite of an effective bandgap inhomogeneity in the QW, which was confirmed by the point excitation and monochromatic cathodoluminescence (CL) mapping method. The lateral interval of each light-emitting area was estimated from the spatial resolution of the CL mapping to be smaller than 60 nm. Such local potential minima is considered to be formed due to the presence of a structure similar to quantum-disks [M. Sugawara: Phys. Rev. B 51 (1995) 10743]. Carriers generated in the InGaN QWs are effectively localized in these regions to form localized QW excitons exhibiting highly efficient spontaneous emissions.
AB - Static, field-modulated and time-resolved spectroscopies were carried out to compare the electronic states between GaN/AlGaN binary and InGaN/AlGaN ternary single quantum wells (SQWs). The internal field that exists across the quantum well (QW) naturally induces a quantum-confined Stark effect (QCSE), namely the redshift of the QW resonance energy and decrease of the electron-hole wavefunction overlap. The GaN/AlGaN SQW exhibited a weak emission due to QCSE. However, optical absorption and degenerate pump-probe measurements revealed that excitonic character was maintained for thin QWs with the well width nearly the same as the bulk free exciton Bohr radius even under an electric field as high as 0.73 MV/cm. A slightly In-alloyed InGaN SQW exhibited a bright luminescence peak in spite of an effective bandgap inhomogeneity in the QW, which was confirmed by the point excitation and monochromatic cathodoluminescence (CL) mapping method. The lateral interval of each light-emitting area was estimated from the spatial resolution of the CL mapping to be smaller than 60 nm. Such local potential minima is considered to be formed due to the presence of a structure similar to quantum-disks [M. Sugawara: Phys. Rev. B 51 (1995) 10743]. Carriers generated in the InGaN QWs are effectively localized in these regions to form localized QW excitons exhibiting highly efficient spontaneous emissions.
KW - Effective bandgap inhomogeneity
KW - InGaN
KW - Localization
KW - Localized quantum well excitons
KW - Piezoelectric field
KW - Quantum-confined Stark effect
UR - http://www.scopus.com/inward/record.url?scp=0033684318&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033684318&partnerID=8YFLogxK
U2 - 10.1143/jjap.39.2417
DO - 10.1143/jjap.39.2417
M3 - Article
AN - SCOPUS:0033684318
SN - 0021-4922
VL - 39
SP - 2417
EP - 2424
JO - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
JF - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
IS - 4 B
ER -