Comparison of parallel solvers for moving particle semi-implicit method

Guangtao Duan, Bin Chen*

*この研究の対応する著者

研究成果: Article査読

18 被引用数 (Scopus)

抄録

Purpose - The purpose of this paper is to find the best solver for parallelizing particle methods based on solving Pressure Poisson Equation (PPE) by taking Moving Particle Semi-Implicit (MPS) method as an example because the solution for PPE is usually the most time-consuming part difficult to parallelize. Design/methodology/approach - To find the best solver, the authors compare six Krylov solvers, namely, Conjugate Gradient method (CG), Scaled Conjugate Gradient method (SCG), Bi-Conjugate Gradient Stabilized (BiCGStab) method, Conjugate Gradient Squared (CGS) method with Symmetric Lanczos Algorithm (SLA) method and Incomplete Cholesky Conjugate Gradient method (ICCG) in terms of convergence, time consumption, parallel efficiency and memory consumption for the semiimplicit particle method. The MPS method is parallelized by the hybrid Open Multi-Processing (OpenMP)/Message Passing Interface (MPI) model. The dam-break flow and channel flow simulations are used to evaluate the performance of different solvers. Findings - It is found that CG converges stably, runs fastest in the serial way, uses the least memory and has highest OpenMP parallel efficiency, but its MPI parallel efficiency is lower than SLA because SLA requires less synchronization than CG. Originality/value - With all these criteria considered and weighed, the recommended parallel solver for the MPS method is CG.

本文言語English
ページ(範囲)834-862
ページ数29
ジャーナルEngineering Computations (Swansea, Wales)
32
3
DOI
出版ステータスPublished - 2015 5月 5
外部発表はい

ASJC Scopus subject areas

  • ソフトウェア
  • 工学(全般)
  • コンピュータ サイエンスの応用
  • 計算理論と計算数学

フィンガープリント

「Comparison of parallel solvers for moving particle semi-implicit method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル