Computation of locational and hourly maximum output of a distributed generator connected to a distribution feeder

Yasuhiro Hayashi*, Junya Matsuki, Yuji Hanai, Shinpei Hosokawa, Naoki Kobayashi

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Recently, the total number of distributed generation such as photovoltaic generation systems and wind turbine generation systems connected to a distribution network has drastically increased. Distributed generation using renewable energy can reduce the distribution loss and emission of CO 2. However, the distribution network with the distributed generators must be operated while maintaining the reliability of the power supply and power quality. In this paper, the authors propose a computational method to determine the maximum output of a distributed generator under operational constraints [(1) voltage limit, (2) line current capacity, and (3) no reverse flow to bank] at arbitrary connection points and hourly periods. In the proposed method, a three-phase iterative load flow calculation is applied to evaluate the above operational constraints. The three-phase iterative load flow calculation has two simple procedures: (Procedure 1) addition of load currents from the terminal node of the feeder to root one, and (Procedure 2) subtraction of voltage drop from the root node of the feeder to terminal one. In order to check the validity of the proposed method, numerical simulations are performed for a distribution system model. Furthermore, the characteristics of locational and hourly maximum output of a distributed generator connected to a distribution feeder are analyzed using several numerical examples.

本文言語English
ページ(範囲)38-47
ページ数10
ジャーナルElectrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)
167
2
DOI
出版ステータスPublished - 2009 4月 30
外部発表はい

ASJC Scopus subject areas

  • エネルギー工学および電力技術
  • 電子工学および電気工学

フィンガープリント

「Computation of locational and hourly maximum output of a distributed generator connected to a distribution feeder」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル