TY - JOUR
T1 - Computation of locational and hourly maximum output of a distributed generator connected to a distribution feeder
AU - Hayashi, Yasuhiro
AU - Matsuki, Junya
AU - Hanai, Yuji
AU - Hosokawa, Shinpei
AU - Kobayashi, Naoki
PY - 2009/4/30
Y1 - 2009/4/30
N2 - Recently, the total number of distributed generation such as photovoltaic generation systems and wind turbine generation systems connected to a distribution network has drastically increased. Distributed generation using renewable energy can reduce the distribution loss and emission of CO 2. However, the distribution network with the distributed generators must be operated while maintaining the reliability of the power supply and power quality. In this paper, the authors propose a computational method to determine the maximum output of a distributed generator under operational constraints [(1) voltage limit, (2) line current capacity, and (3) no reverse flow to bank] at arbitrary connection points and hourly periods. In the proposed method, a three-phase iterative load flow calculation is applied to evaluate the above operational constraints. The three-phase iterative load flow calculation has two simple procedures: (Procedure 1) addition of load currents from the terminal node of the feeder to root one, and (Procedure 2) subtraction of voltage drop from the root node of the feeder to terminal one. In order to check the validity of the proposed method, numerical simulations are performed for a distribution system model. Furthermore, the characteristics of locational and hourly maximum output of a distributed generator connected to a distribution feeder are analyzed using several numerical examples.
AB - Recently, the total number of distributed generation such as photovoltaic generation systems and wind turbine generation systems connected to a distribution network has drastically increased. Distributed generation using renewable energy can reduce the distribution loss and emission of CO 2. However, the distribution network with the distributed generators must be operated while maintaining the reliability of the power supply and power quality. In this paper, the authors propose a computational method to determine the maximum output of a distributed generator under operational constraints [(1) voltage limit, (2) line current capacity, and (3) no reverse flow to bank] at arbitrary connection points and hourly periods. In the proposed method, a three-phase iterative load flow calculation is applied to evaluate the above operational constraints. The three-phase iterative load flow calculation has two simple procedures: (Procedure 1) addition of load currents from the terminal node of the feeder to root one, and (Procedure 2) subtraction of voltage drop from the root node of the feeder to terminal one. In order to check the validity of the proposed method, numerical simulations are performed for a distribution system model. Furthermore, the characteristics of locational and hourly maximum output of a distributed generator connected to a distribution feeder are analyzed using several numerical examples.
KW - Distributed generator
KW - Locational and hourly maximum output
KW - Reliability of power supply
KW - Three-phase load flow calculation
UR - http://www.scopus.com/inward/record.url?scp=65349134112&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=65349134112&partnerID=8YFLogxK
U2 - 10.1002/eej.20610
DO - 10.1002/eej.20610
M3 - Article
AN - SCOPUS:65349134112
SN - 0424-7760
VL - 167
SP - 38
EP - 47
JO - Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)
JF - Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)
IS - 2
ER -