Computation of singularities and intersections of offsets of planar curves

Takashi Maekawa, Nicholas M. Patrikalakis*

*この研究の対応する著者

研究成果: Article査読

53 被引用数 (Scopus)

抄録

The objective of this paper is to compute the singularities of a normal offset of a planar integral polynomial curve and the intersections of two specific normal offsets of two planar integral polynomial curves. Singularities include irregular points (such as isolated points and cusps) and self-intersections. The key element in the above techniques is the computation of all real roots within a finite box of systems of nonlinear equations involving polynomials and square roots of polynomials. The curves that we are investigating are described by polynomial functions, but their offset curve representations involve polynomials and square roots of polynomials. A methodology based on adaptive subdivision techniques to solve the resulting systems of nonlinear equations is investigated. Key components of our methods are the reduction of the problems into solutions of systems of polynomial equations of higher dimensionality through the introduction of auxiliary variables and the use of rounded interval arithmetic in the context of Bernstein subdivision to enhance the robustness of floating point implementation. Examples illustrate our techniques.

本文言語English
ページ(範囲)407-429
ページ数23
ジャーナルComputer Aided Geometric Design
10
5
DOI
出版ステータスPublished - 1993 10月
外部発表はい

ASJC Scopus subject areas

  • モデリングとシミュレーション
  • 自動車工学
  • 航空宇宙工学
  • コンピュータ グラフィックスおよびコンピュータ支援設計

フィンガープリント

「Computation of singularities and intersections of offsets of planar curves」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル