Computational analysis of hydrogen flow and aerodynamic noise emission in a solenoid valve during fast-charging to fuel cell automobiles

Hifni Mukhtar Ariyadi*, Jongsoo Jeong, Kiyoshi Saito

*この研究の対応する著者

研究成果: Article査読

9 被引用数 (Scopus)

抄録

Green energy vehicle technologies such as hydrogen-fuelled automobiles are progressing rapidly towards decarbonisation. A significant challenge in hydrogen automobiles is the storage method and safety, particularly during fast filling, including the aerodynamic noise of high-pressure systems in pressure reducer systems. In this study, a hydrogen tank solenoid (HTS) system is developed as a hydrogen supply system for fuel cell vehicles to address the above issues where one of its main parts, namely solenoid valve, works as a check valve during fast filling and as an electromagnetic pressure controller during operation. Focusing on the solenoid valve inside the HTS system, the flow characteristics and flow-induced noise during the fast charging of hydrogen are analysed via computational fluid dynamics simulation. The results show that without any treatment, the noise generated inside the solenoid valve can be extremely loud and hence adversely affect devices and users, owing primarily to severe turbulence downstream of the valve. The severe turbulence is reduced by modifying the flow path at the outlet passage, which also reduces the aerodynamic noise by 2%–12% depending on the operating conditions.

本文言語English
論文番号103661
ジャーナルJournal of Energy Storage
45
DOI
出版ステータスPublished - 2022 1月

ASJC Scopus subject areas

  • 再生可能エネルギー、持続可能性、環境
  • エネルギー工学および電力技術
  • 電子工学および電気工学

フィンガープリント

「Computational analysis of hydrogen flow and aerodynamic noise emission in a solenoid valve during fast-charging to fuel cell automobiles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル