TY - GEN
T1 - Computational experiments for improving the performance of fugine based on supermulti-jets colliding working for a wide range of speeds from startup to hypersonic condition
AU - Tsuru, Kohta
AU - Yamagishi, Kan
AU - Okamoto, Takuma
AU - Tanaka, Yoshiaki
AU - Naitoh, Ken
N1 - Publisher Copyright:
© 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2016
Y1 - 2016
N2 - A new single-point compression principle based on supermulti-jets colliding with pulsation (Naitoh et al, 2010~2015) has a potential for engendering a new single lightweight engine (Fugine) capable of operating over a wide range of Mach numbers from startup to the hypersonic regime with high thermal efficiency due to less heat loss on walls and low noise. Although our previous reports indicate high thermal efficiencies at some Mach number conditions around sound speed, there were very less investigations at very low piston speed below 2,000rpm and at the hypersonic regime. Present computational results show that we can get higher thermal efficiency over 50% even in low piston speeds (about 1,000 rpm) by using the piston movement of a sigmoid manner. At the hypersonic regime, we demonstrate the results of higher power for conditions closer to the stoichiometric condition.
AB - A new single-point compression principle based on supermulti-jets colliding with pulsation (Naitoh et al, 2010~2015) has a potential for engendering a new single lightweight engine (Fugine) capable of operating over a wide range of Mach numbers from startup to the hypersonic regime with high thermal efficiency due to less heat loss on walls and low noise. Although our previous reports indicate high thermal efficiencies at some Mach number conditions around sound speed, there were very less investigations at very low piston speed below 2,000rpm and at the hypersonic regime. Present computational results show that we can get higher thermal efficiency over 50% even in low piston speeds (about 1,000 rpm) by using the piston movement of a sigmoid manner. At the hypersonic regime, we demonstrate the results of higher power for conditions closer to the stoichiometric condition.
UR - http://www.scopus.com/inward/record.url?scp=85088409263&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088409263&partnerID=8YFLogxK
U2 - 10.2514/6.2016-4709
DO - 10.2514/6.2016-4709
M3 - Conference contribution
AN - SCOPUS:85088409263
SN - 9781624104060
T3 - 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016
BT - 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016
Y2 - 25 July 2016 through 27 July 2016
ER -