抄録
We study scaling limits for d-dimensional Gaussian random walks perturbed by an attractive force toward a certain subspace of Rd, especially under the critical situation that the rate functional of the corresponding large deviation principle admits two minimizers. We obtain different type of limits, in a positive recurrent regime, depending on the co-dimension of the subspace and the conditions imposed at the final time under the presence or absence of a wall. The motivation comes from the study of polymers or (1 + 1)-dimensional interfaces with δ-pinning.
本文言語 | English |
---|---|
ページ(範囲) | 441-480 |
ページ数 | 40 |
ジャーナル | Probability Theory and Related Fields |
巻 | 143 |
号 | 3-4 |
DOI | |
出版ステータス | Published - 2009 3月 |
外部発表 | はい |
ASJC Scopus subject areas
- 分析
- 統計学および確率
- 統計学、確率および不確実性