Condition for emergence of the Floquet-Gibbs state in periodically driven open systems

Tatsuhiko Shirai, Takashi Mori, Seiji Miyashita

研究成果: Article査読

49 被引用数 (Scopus)

抄録

We study probability distribution of a steady state of a periodically driven system coupled to a thermal bath by using a quantum master equation in the weak-coupling limit. It is proved that, even when the external field is strong, the probability distribution is independent of the detailed nature of the thermal bath under the following conditions: (i) the Hamiltonian of the relevant system is bounded and the period of the driving field is short, (ii) the Hamiltonians for the driving field at different times commute, and (iii) the Hamiltonians of the driving field and of the interaction between the relevant system and the thermal bath commute. It is shown that the steady state is described by the Gibbs distribution of the Floquet states of the relevant system at the temperature of the thermal bath.

本文言語English
論文番号030101
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
91
3
DOI
出版ステータスPublished - 2015 3月 3
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Condition for emergence of the Floquet-Gibbs state in periodically driven open systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル