Condition for the existence of complex modes in a trapped Bose-Einstein condensate with a highly quantized vortex

E. Fukuyama*, M. Mine, M. Okumura, T. Sunaga, Y. Yamanaka

*この研究の対応する著者

研究成果: Article査読

5 被引用数 (Scopus)

抄録

We consider a trapped Bose-Einstein condensate (BEC) with a highly quantized vortex. For the BEC with a doubly, triply, or quadruply quantized vortex, the numerical calculations have shown that the Bogoliubov-de Gennes equations, which describe the fluctuation of the condensate, have complex eigenvalues. In this paper, we obtain the analytic expression of the condition for the existence of complex modes, using the method developed by Rossignoli and Kowalski for the small coupling constant. To derive it, we make the two-mode approximation. With the derived analytic formula, we can identify the quantum numbers of the complex modes for each winding number of the vortex. Our result is consistent with those obtained by the numerical calculation in the case that the winding number is two, three, or four. We prove that the complex modes always exist when the condensate has a highly quantized vortex.

本文言語English
論文番号043608
ジャーナルPhysical Review A - Atomic, Molecular, and Optical Physics
76
4
DOI
出版ステータスPublished - 2007 10月 9

ASJC Scopus subject areas

  • 原子分子物理学および光学

フィンガープリント

「Condition for the existence of complex modes in a trapped Bose-Einstein condensate with a highly quantized vortex」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル