抄録
Quantized conductance was observed in a cation-migration-based resistive switching memory cell with a simple metalinsulatormetal (MIM) structure using a thin Ta 2O 5 layer. The observed conductance changes are attributed to the formation and dissolution of a metal filament with an atomic point contact of different integer multiples in the Ta 2O 5 layer. The results demonstrate that atomic point contacts can be realized in an oxide-based MIM structure that functions as a nanogap-based atomic switch (Terabe etal 2005 Nature 433 47). By applying consecutive voltage pulses at periodic intervals of different times, we also observed an effect analogous to the long-term potentiation of biological synapses, which shows that the oxide-based atomic switch has potential for use as an essential building block of neural computing systems.
本文言語 | English |
---|---|
論文番号 | 435705 |
ジャーナル | Nanotechnology |
巻 | 23 |
号 | 43 |
DOI | |
出版ステータス | Published - 2012 11月 2 |
外部発表 | はい |
ASJC Scopus subject areas
- バイオエンジニアリング
- 化学 (全般)
- 材料科学(全般)
- 材料力学
- 機械工学
- 電子工学および電気工学