Context analysis and estimation of mobile users by using bio-signals and sensor data

Hiromi Shimizu, Mutsumi Suganuma, Wataru Kameyama

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

The sensor data obtained from mobile and wearable devices are useful to analyze and estimate user's context, but also user's bio-signals are, because they may reflect user's psychological aspects in the corresponding context. Therefore, in this paper, we focus on context analysis and estimation of mobile users by using bio-signals and sensor data of mobile devices. For the analysis and estimation, various machine learning methods are applied to classify the data into pre-defined six contexts. The evaluation shows that Gradient Boosting Decision Tree achieves the highest classification accuracy of about 80% in supervised methods, and Sparse Representation-based Classification achieves more than 90% accuracy. The results suggest that the context analysis and estimation can be done accurately by using bio-signals and sensor data.

本文言語English
ホスト出版物のタイトル2019 IEEE 8th Global Conference on Consumer Electronics, GCCE 2019
出版社Institute of Electrical and Electronics Engineers Inc.
ページ263-266
ページ数4
ISBN(電子版)9781728135755
DOI
出版ステータスPublished - 2019 10月
イベント8th IEEE Global Conference on Consumer Electronics, GCCE 2019 - Osaka, Japan
継続期間: 2019 10月 152019 10月 18

出版物シリーズ

名前2019 IEEE 8th Global Conference on Consumer Electronics, GCCE 2019

Conference

Conference8th IEEE Global Conference on Consumer Electronics, GCCE 2019
国/地域Japan
CityOsaka
Period19/10/1519/10/18

ASJC Scopus subject areas

  • 器械工学
  • 人工知能
  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「Context analysis and estimation of mobile users by using bio-signals and sensor data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル