TY - JOUR
T1 - Control of spin-crossover phenomena in one-dimensional triazole-coordinated iron(II) complexes by means of functional counter ions
AU - Sugahara, Akira
AU - Kamebuchi, Hajime
AU - Okazawa, Atsushi
AU - Enomoto, Masaya
AU - Kojima, Norimichi
N1 - Publisher Copyright:
© 2017 by the authors.
PY - 2017/9/1
Y1 - 2017/9/1
N2 - The spin-crossover (SCO) phenomenon between a high-spin and a low-spin state has attracted much attention in the field of materials science. Among the various kinds of SCO complexes, the triazole-bridged iron(II) polymeric chain system, [Fe(II)(R-trz)3]X2.xH2O (where trz is triazole and X is the anion), exhibiting the SCO phenomenon with thermal hysteresis around room temperature, has been extensively studied from the viewpoint of molecular memory and molecular devices. In connection with this system, we have controlled the SCO phenomenon according to the characteristic properties of counter ions. In the case of X being CnH2n+1SO3-, the spin transition temperature (T1/2) increases with increasing the length (n) of the alkyl chain of the counter ion and saturates above n = 5, which is attributed to the increase in the intermolecular interaction of the alkyl chains of CnH2n+1SO3-, called the fastener effect. The hysteresis width of T1/2 decreases with increasing n, showing the even-odd, also known as parity, effect. In the cases where X is toluenesulfonate (tos: CH3C6H4SO3-) and aminobenzenesulfonate (abs: NH2C6H4SO3-), T1/2 and its hysteresis width vary drastically with the structural isomerism (ortho-, metha-, and para-substitution) of counter ions, which implies the possibility of photoinduced spin transition by means of the photoisomerization of counter ions. From this strategy, we have synthesized [Fe(II)(NH2-trz)3](SP150)2·2H2O (SP150 = N-alkylsulfonated spiropyran) and investigated the SCO phenomenon. Moreover, we have developed [Fe(II)(R-trz)3]@Nafion films exhibiting spin transition around room temperature, where the Nafion membrane behaves as a counter anion as well as a transparent substrate, and investigated the photogenerated high-spin state below 35 K. The lifetime of the photogenerated high-spin state strongly depends on the intensity of irradiated light.
AB - The spin-crossover (SCO) phenomenon between a high-spin and a low-spin state has attracted much attention in the field of materials science. Among the various kinds of SCO complexes, the triazole-bridged iron(II) polymeric chain system, [Fe(II)(R-trz)3]X2.xH2O (where trz is triazole and X is the anion), exhibiting the SCO phenomenon with thermal hysteresis around room temperature, has been extensively studied from the viewpoint of molecular memory and molecular devices. In connection with this system, we have controlled the SCO phenomenon according to the characteristic properties of counter ions. In the case of X being CnH2n+1SO3-, the spin transition temperature (T1/2) increases with increasing the length (n) of the alkyl chain of the counter ion and saturates above n = 5, which is attributed to the increase in the intermolecular interaction of the alkyl chains of CnH2n+1SO3-, called the fastener effect. The hysteresis width of T1/2 decreases with increasing n, showing the even-odd, also known as parity, effect. In the cases where X is toluenesulfonate (tos: CH3C6H4SO3-) and aminobenzenesulfonate (abs: NH2C6H4SO3-), T1/2 and its hysteresis width vary drastically with the structural isomerism (ortho-, metha-, and para-substitution) of counter ions, which implies the possibility of photoinduced spin transition by means of the photoisomerization of counter ions. From this strategy, we have synthesized [Fe(II)(NH2-trz)3](SP150)2·2H2O (SP150 = N-alkylsulfonated spiropyran) and investigated the SCO phenomenon. Moreover, we have developed [Fe(II)(R-trz)3]@Nafion films exhibiting spin transition around room temperature, where the Nafion membrane behaves as a counter anion as well as a transparent substrate, and investigated the photogenerated high-spin state below 35 K. The lifetime of the photogenerated high-spin state strongly depends on the intensity of irradiated light.
KW - Fastener effect
KW - Isomerization effect
KW - LIESST
KW - Multifunctionality
KW - Nafion
KW - Spin-crossover
KW - Transition metal complex film
UR - http://www.scopus.com/inward/record.url?scp=85045335367&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045335367&partnerID=8YFLogxK
U2 - 10.3390/inorganics5030050
DO - 10.3390/inorganics5030050
M3 - Review article
AN - SCOPUS:85045335367
SN - 2304-6740
VL - 5
JO - Inorganics
JF - Inorganics
IS - 3
M1 - 50
ER -