Cosmology in generalized Horndeski theories with second-order equations of motion

Ryotaro Kase, Shinji Tsujikawa

研究成果: Article査読

51 被引用数 (Scopus)


We study the cosmology of an extended version of Horndeski theories with second-order equations of motion on the flat Friedmann-Lemaître-Robertson- Walker background. In addition to a dark energy field χ associated with the gravitational sector, we take into account multiple scalar fields φI (I=1,2,...,N-1) characterized by the Lagrangians P(I)(XI) with XI=∂μφI∂μφI. These additional scalar fields can model the perfect fluids of radiation and nonrelativistic matter. We derive propagation speeds of scalar and tensor perturbations as well as conditions for the absence of ghosts. The theories beyond Horndeski induce nontrivial modifications to all the propagation speeds of N scalar fields, but the modifications to those for the matter fields φI are generally suppressed relative to that for the dark energy field χ. We apply our results to the covariantized Galileon with an Einstein-Hilbert term in which partial derivatives of the Minkowski Galileon are replaced by covariant derivatives. Unlike the covariant Galileon with second-order equations of motion in general space-time, the scalar propagation speed square cs12 associated with the field χ becomes negative during the matter era for late-time tracking solutions, so the two Galileon theories can be clearly distinguished at the level of linear cosmological perturbations.

ジャーナルPhysical Review D - Particles, Fields, Gravitation and Cosmology
出版ステータスPublished - 2014 8月 28

ASJC Scopus subject areas

  • 核物理学および高エネルギー物理学
  • 物理学および天文学(その他)


「Cosmology in generalized Horndeski theories with second-order equations of motion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。