Counting the number of distinct real roots of certain polynomials by Bezoutian and the Galois groups over the rational number field

Shuichi Otake*

*この研究の対応する著者

    研究成果: Article査読

    1 被引用数 (Scopus)

    抄録

    In this article, we count the number of distinct real roots of certain polynomials in terms of Bezoutian form. As an application, we construct certain irreducible polynomials over the rational number field which have given number of real roots and by the result of Oz Ben-Shimol [On Galois groups of prime degree polynomials with complex roots, Algebra Disc. Math. 2 (2009), pp. 99-107], we obtain an algorithm to construct irreducible polynomials of prime degree p whose Galois groups are isomorphic to Sp or Ap.

    本文言語English
    ページ(範囲)429-441
    ページ数13
    ジャーナルLinear and Multilinear Algebra
    61
    4
    DOI
    出版ステータスPublished - 2013 4月

    ASJC Scopus subject areas

    • 代数と数論

    フィンガープリント

    「Counting the number of distinct real roots of certain polynomials by Bezoutian and the Galois groups over the rational number field」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル