TY - JOUR
T1 - Cricshotclassify
T2 - An approach to classifying batting shots from cricket videos using a convolutional neural network and gated recurrent unit
AU - Sen, Anik
AU - Deb, Kaushik
AU - Dhar, Pranab Kumar
AU - Koshiba, Takeshi
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/4/2
Y1 - 2021/4/2
N2 - Recognizing the sport of cricket on the basis of different batting shots can be a significant part of context-based advertisement to users watching cricket, generating sensor-based commentary systems and coaching assistants. Due to the similarity between different batting shots, manual feature extraction from video frames is tedious. This paper proposes a hybrid deep-neural-network architecture for classifying 10 different cricket batting shots from offline videos. We composed a novel dataset, CricShot10, comprising uneven lengths of batting shots and unpredictable illumination conditions. Impelled by the enormous success of deep-learning models, we utilized a convolutional neural network (CNN) for automatic feature extraction, and a gated recurrent unit (GRU) to deal with long temporal dependency. Initially, conventional CNN and dilated CNN-based architectures were developed. Following that, different transfer-learning models were investigated—namely, VGG16, InceptionV3, Xception, and DenseNet169—which freeze all the layers. Experiment results demonstrated that the VGG16–GRU model outperformed the other models by attaining 86% accuracy. We further explored VGG16 and two models were developed, one by freezing all but the final 4 VGG16 layers, and another by freezing all but the final 8 VGG16 layers. On our CricShot10 dataset, these two models were 93% accurate. These results verify the effectiveness of our proposed architecture compared with other methods in terms of accuracy.
AB - Recognizing the sport of cricket on the basis of different batting shots can be a significant part of context-based advertisement to users watching cricket, generating sensor-based commentary systems and coaching assistants. Due to the similarity between different batting shots, manual feature extraction from video frames is tedious. This paper proposes a hybrid deep-neural-network architecture for classifying 10 different cricket batting shots from offline videos. We composed a novel dataset, CricShot10, comprising uneven lengths of batting shots and unpredictable illumination conditions. Impelled by the enormous success of deep-learning models, we utilized a convolutional neural network (CNN) for automatic feature extraction, and a gated recurrent unit (GRU) to deal with long temporal dependency. Initially, conventional CNN and dilated CNN-based architectures were developed. Following that, different transfer-learning models were investigated—namely, VGG16, InceptionV3, Xception, and DenseNet169—which freeze all the layers. Experiment results demonstrated that the VGG16–GRU model outperformed the other models by attaining 86% accuracy. We further explored VGG16 and two models were developed, one by freezing all but the final 4 VGG16 layers, and another by freezing all but the final 8 VGG16 layers. On our CricShot10 dataset, these two models were 93% accurate. These results verify the effectiveness of our proposed architecture compared with other methods in terms of accuracy.
KW - Batting shots
KW - Convolutional neural network
KW - Deep learning
KW - Gated recurrent unit
KW - Transfer learning
UR - http://www.scopus.com/inward/record.url?scp=85104284161&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104284161&partnerID=8YFLogxK
U2 - 10.3390/s21082846
DO - 10.3390/s21082846
M3 - Article
C2 - 33919484
AN - SCOPUS:85104284161
SN - 1424-8220
VL - 21
JO - Sensors
JF - Sensors
IS - 8
M1 - 2846
ER -