TY - JOUR
T1 - Crystallization process of Sr0.7Bi2.3Ta2O9 thin films with different crystal orientation prepared by chemical liquid deposition using alkoxide precursor
AU - Koiwa, Ichiro
AU - Kanehara, Takao
AU - Mita, Juro
AU - Osaka, Tetsuya
AU - Ono, Sachiko
AU - Sakakibara, Akira
AU - Seki, Tomonori
PY - 1998/1/1
Y1 - 1998/1/1
N2 - The crystallization process of Sr0.7Bi2.3Ta2O9 (SBT) ferroelectric thin films with different crystal orientations formed by chemical liquid deposition using an alkoxide precursor was investigated. One film showed strong c-axis orientation (a-type film), while another shows scarcely any c-axis orientation (b-type film). We report that the crystallization process was the same even when crystal orientation differed. Thin films first change from amorphous to fluorite fine grains; the fiuorite grains then change to bismuth layer-structure grains. The different orientation of the SBT films is not caused by different crystallization process. Both SBT films with different crystal orientations consist of fine fluorite grains after 650°C heat-treatment. Their leakage current density characteristics differ, however. The leakage current density of the a-type film was independent of the electric field, and showed a low value of 10-8A/cm2. The leakage current density of the b-type film, however, was dependent on the electric field, and increased continuously with the increasing electric field. After 700°C heat-treatment, both films consist of large grains with bismuth layer-structure and fine fiuorite grains. The matrix of both films contains large grains with bismuth layer-structure that determines the leakage current density characteristics. Since the fiuorite grain size after a 700°C heat-treatment is the same as that after 650°C heat-treatment, nucleation is predominant at the structural phase boundary from amorphous to fluorite. The bismuth layer-structure grains are large and single-crystal grains after both a 700 and 800°C heattreatment. Increased grain size predominates at the structural phase boundary from fluorite to bismuth layer-structure grains. Clearly, ferroelectric SBT films with bismuth layer-structure are crystallized in two steps, each having a different predominant crystal growth mechanism.
AB - The crystallization process of Sr0.7Bi2.3Ta2O9 (SBT) ferroelectric thin films with different crystal orientations formed by chemical liquid deposition using an alkoxide precursor was investigated. One film showed strong c-axis orientation (a-type film), while another shows scarcely any c-axis orientation (b-type film). We report that the crystallization process was the same even when crystal orientation differed. Thin films first change from amorphous to fluorite fine grains; the fiuorite grains then change to bismuth layer-structure grains. The different orientation of the SBT films is not caused by different crystallization process. Both SBT films with different crystal orientations consist of fine fluorite grains after 650°C heat-treatment. Their leakage current density characteristics differ, however. The leakage current density of the a-type film was independent of the electric field, and showed a low value of 10-8A/cm2. The leakage current density of the b-type film, however, was dependent on the electric field, and increased continuously with the increasing electric field. After 700°C heat-treatment, both films consist of large grains with bismuth layer-structure and fine fiuorite grains. The matrix of both films contains large grains with bismuth layer-structure that determines the leakage current density characteristics. Since the fiuorite grain size after a 700°C heat-treatment is the same as that after 650°C heat-treatment, nucleation is predominant at the structural phase boundary from amorphous to fluorite. The bismuth layer-structure grains are large and single-crystal grains after both a 700 and 800°C heattreatment. Increased grain size predominates at the structural phase boundary from fluorite to bismuth layer-structure grains. Clearly, ferroelectric SBT films with bismuth layer-structure are crystallized in two steps, each having a different predominant crystal growth mechanism.
KW - Alkoxide precursor
KW - Crystallization process
KW - Ferroelectric memory
KW - Srbitao thin film
UR - http://www.scopus.com/inward/record.url?scp=0032047048&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032047048&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0032047048
SN - 0916-8524
VL - E81-C
SP - 552
EP - 558
JO - IEICE Transactions on Electronics
JF - IEICE Transactions on Electronics
IS - 4
ER -