Data Assimilation Versus Machine Learning: Comparative Study of Fish Catch Forecasting

Yuka Horiuchi, Yuya Kokaki, Tetsunori Kobayashi, Tetsuji Ogawa

研究成果: Conference contribution

抄録

Data assimilation (DA) and machine learning (ML) are empirically compared for automatic daily fish catch forecasting (DFCF). ML would be a promising approach if large-scale data are available for training. Otherwise, DA would perform well, where prior knowledge on a monitoring target is incorporated into modeling. The present study aims to clarify the robustness of both approaches in DFCF with a small amount of data, and their evolution as the amount of training data increases. Experimental comparisons using catch and meteorological data demonstrate that a DA-based DFCF system yields a significant improvement over an ML-based systems with a small amount of data, and is comparable with ML-based systems with sufficient amount of data.

本文言語English
ホスト出版物のタイトルOCEANS 2019 - Marseille, OCEANS Marseille 2019
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728114507
DOI
出版ステータスPublished - 2019 6月
イベント2019 OCEANS - Marseille, OCEANS Marseille 2019 - Marseille, France
継続期間: 2019 6月 172019 6月 20

出版物シリーズ

名前OCEANS 2019 - Marseille, OCEANS Marseille 2019
2019-June

Conference

Conference2019 OCEANS - Marseille, OCEANS Marseille 2019
国/地域France
CityMarseille
Period19/6/1719/6/20

ASJC Scopus subject areas

  • 海洋学
  • 自動車工学
  • 管理、モニタリング、政策と法律
  • 水の科学と技術
  • 器械工学

フィンガープリント

「Data Assimilation Versus Machine Learning: Comparative Study of Fish Catch Forecasting」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル