Data-localization scheme using task-fusion for macro-dataflow computation

Akimasa Yoshida*, Seiji Maeda, Kensaku Fujimoto, Hironori Kasahara

*この研究の対応する著者

研究成果: Paper査読

抄録

This paper proposes a data-localization scheme for macro-dataflow computation in which coarse-grain tasks such as loops, subroutines and basic blocks in a Fortran program are dynamically scheduled onto processors and executed in parallel. The proposed scheme reduces data transfer overhead via centralized shared memory by using local memory effectively for passing shared data among coarse-grain tasks, especially loops. This compilation scheme decomposes multiple loops with data dependences to enable to localize data by loop-aligned-decomposition method, then fuses decomposed loops requiring a large amount of data transfer among them into a macrotask, which is assigned to a processor at run-time. The scheme has been implemented on an actual multiprocessor system OSCAR having centralized shared memory and distributed shared memory in addition to local memory on each processor. Performance evaluation on OSCAR shows that the proposed data-localization scheme can reduce the execution time by 21%.

本文言語English
ページ135-140
ページ数6
出版ステータスPublished - 1995
イベントProceedings of the 1995 IEEE Pacific RIM Conference on Communications, Computers, and Signal Processing - Victoria, BC, Can
継続期間: 1995 5月 171995 5月 19

Other

OtherProceedings of the 1995 IEEE Pacific RIM Conference on Communications, Computers, and Signal Processing
CityVictoria, BC, Can
Period95/5/1795/5/19

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Data-localization scheme using task-fusion for macro-dataflow computation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル