Decision maker based on atomic switches

Song Ju Kim*, Tohru Tsuruoka, Tsuyoshi Hasegawa, Masashi Aono, Kazuya Terabe, Masakazu Aono


研究成果: Article査読

18 被引用数 (Scopus)


We propose a simple model for an atomic switch-based decision maker (ASDM), and show that, as long as its total number of metal atoms is conserved when coupled with suitable operations, an atomic switch system provides a sophisticated "decision-making" capability that is known to be one of the most important intellectual abilities in human beings. We considered a popular decisionmaking problem studied in the context of reinforcement learning, the multi-armed bandit problem (MAB); the problem of finding, as accurately and quickly as possible, the most profitable option from a set of options that gives stochastic rewards. These decisions are made as dictated by each volume of precipitated metal atoms, which is moved in a manner similar to the fluctuations of a rigid body in a tug-of-war game. The "tug-of-war (TOW) dynamics" of the ASDM exhibits higher efficiency than conventional reinforcement-learning algorithms. We show analytical calculations that validate the statistical reasons for the ASDM to produce such high performance, despite its simplicity. Efficient MAB solvers are useful for many practical applications, because MAB abstracts a variety of decisionmaking problems in real-world situations where an efficient trial-and-error is required. The proposed scheme will open up a new direction in physics-based analog-computing paradigms, which will include such things as "intelligent nanodevices" based on self-judgment.

ジャーナルAIMS Materials Science
出版ステータスPublished - 2016

ASJC Scopus subject areas

  • 材料科学(全般)


「Decision maker based on atomic switches」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。