Decision tree learning system with switching evaluator

Takesih Koshiba*

*この研究の対応する著者

研究成果: Conference contribution

抄録

In this paper, we introduce the notion of the local strategy of constructing decision trees that includes the information theoretic entropy algorithm in ID3 (or C4.5) and any other local algorithms. Simply put, given a sample, a local algorithm constructs a decision tree in the top-down manner using an evaluation function. We propose a new local algorithm that is very different from the entropy algorithm. We analyze behaviors of the two algorithms on a simple model. Based on these analyses, we propose a learning system of decision trees which can change an evaluation function while constructing decision trees, and verify the effect of the system by experiments with real databases. The system not only achieves a high accuracy, but also produces well-balanced decision trees, which have the advantage of fast classification.

本文言語English
ホスト出版物のタイトルAdvances in Artificial Intelligence - 11th Biennial Conference of the Canadian Society for Computational Studies of Intelligence, AI 1996, Proceedings
編集者Gordon McCalla
出版社Springer Verlag
ページ349-361
ページ数13
ISBN(印刷版)3540612912, 9783540612919
DOI
出版ステータスPublished - 1996
外部発表はい
イベント11th Biennial Conference of the Canadian Society for Computational Studies of Intelligence, AI 1996 - Toronto, Canada
継続期間: 1996 5月 211996 5月 24

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
1081
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other11th Biennial Conference of the Canadian Society for Computational Studies of Intelligence, AI 1996
国/地域Canada
CityToronto
Period96/5/2196/5/24

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Decision tree learning system with switching evaluator」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル