Deep Learning-based Management for Wastewater Treatment Plants under Blockchain Environment

Keyi Wan, Zhiwei Guo, Jianhui Wang, Wenru Zeng, Xu Gao, Yu Shen, Keping Yu

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

Smart management for sewage treatment plants has always been a hot issue. It is generally implemented on the basis of a data scheduling platform, in which intelligent algorithms can be embedded. The most essential problem for such management is to predict daily business volumes, including amount and quality of wastewater. To achieve a comprehensive perspective, the generation of wastewater is viewed as collaborative effect of multiple factors in social system. This paper proposes a deep learning-based management for sewage treatment plants. Specially, it combines two classical neural network models to construct a hybrid model for precise prediction of business volumes. At last, a set of experiments are carried out to assess the proposed management mechanism. Results reveal that it performs better than general baselines.

本文言語English
ホスト出版物のタイトル2020 IEEE/CIC International Conference on Communications in China, ICCC Workshops 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ページ106-110
ページ数5
ISBN(電子版)9781728187556
DOI
出版ステータスPublished - 2020 8月
イベント2020 IEEE/CIC International Conference on Communications in China, ICCC Workshops 2020 - Chongqing, China
継続期間: 2020 8月 92020 8月 11

出版物シリーズ

名前2020 IEEE/CIC International Conference on Communications in China, ICCC Workshops 2020

Conference

Conference2020 IEEE/CIC International Conference on Communications in China, ICCC Workshops 2020
国/地域China
CityChongqing
Period20/8/920/8/11

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 信号処理
  • 健康情報学
  • 器械工学

フィンガープリント

「Deep Learning-based Management for Wastewater Treatment Plants under Blockchain Environment」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル