Deep Transfer Learning Based PPI Prediction for Protein Complex Detection

Xin Yuan, Hangyu Deng, Jinglu Hu

研究成果: Conference contribution

抄録

This paper deals with the problem of detecting protein complexes from protein-protein interaction (PPI) network using a spectral clustering method. A complete PPI network is crucial for detection performance. However, experimentally identified PPIs are usually very limited, resulting in incomplete PPI networks. To solve this problem, we propose a deep transfer learning based predictor for the PPI prediction, consisting of a semi-supervised SVM classifier and a deep feature extractor of convolution neural network (CNN). Considering the fact that the similarities of gene ontology (GO) annotations contribute to protein interaction, and the difference of subcellular localizations contribute to negative interactions, we pre-train the deep CNN feature extractor in deep GO annotation and subcellular localization predictors and then transfer it to the PPI prediction. In this way, we have a deep PPI detector enhanced with transfer learning of GO annotation and subcellular localization prediction. Experimental results show that the proposed method outperforms the state-of-the-art methods on benchmark datasets.

本文言語English
ホスト出版物のタイトル2021 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ページ321-326
ページ数6
ISBN(電子版)9781665442077
DOI
出版ステータスPublished - 2021
イベント2021 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2021 - Melbourne, Australia
継続期間: 2021 10月 172021 10月 20

出版物シリーズ

名前Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
ISSN(印刷版)1062-922X

Conference

Conference2021 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2021
国/地域Australia
CityMelbourne
Period21/10/1721/10/20

ASJC Scopus subject areas

  • 電子工学および電気工学
  • 制御およびシステム工学
  • 人間とコンピュータの相互作用

フィンガープリント

「Deep Transfer Learning Based PPI Prediction for Protein Complex Detection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル