Delving into the representation learning of deep hashing

Quan Cui, Zhao Min Chen, Osamu Yoshie*


研究成果: Article査読


Searching for the nearest neighbor is a fundamental problem in the computer vision field, and deep hashing has become one of the most representative and widely used methods, which learns to generate compact binary codes for visual data. In this paper, we first delve into the representation learning of deep hashing and surprisingly find that deep hashing could be a double-edged sword, i.e., deep hashing can accelerate the query speed and decrease the storage cost in the nearest neighbor search progress, but it greatly sacrifices the discriminability of deep representations especially with extremely short target code lengths. To solve this problem, we propose a two-step deep hashing learning framework. The first step focuses on learning deep discriminative representations with metric learning. Subsequently, the learning framework concentrates on simultaneously learning compact binary codes and preserving representations learned in the former step from being sacrificed. Extensive experiments on two general image datasets and four challenging image datasets validate the effectiveness of our proposed learning framework. Moreover, the side effect of deep hashing is successfully mitigated with our learning framework.

出版ステータスPublished - 2022 7月 14

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • 認知神経科学
  • 人工知能


「Delving into the representation learning of deep hashing」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。