Design and optimization of a lightweight and compact waist mechanism for a robotic rat

Chang Li, Qing Shi*, Zihang Gao, Mengchao Ma, Hiroyuki Ishii, Atsuo Takanishi, Qiang Huang, Toshio Fukuda


研究成果: Article査読

6 被引用数 (Scopus)


A multi-degree-of-freedom (multi-DOF) waist mechanism is required for robotic rats to perform species-typical behaviors, but the existing waist mechanisms are heavy and cumbersome. To solve this problem, we propose a linkage-based slider-coupled symmetric swing (S3) mechanism, which features a single-input multiple-output structure, allowing it to couple multiple DOFs. The linkage mechanism has a variety of forms and linkage curves, making the S3 mechanism suitable for multiple-constraint optimization. Based on kinematic and dynamic analyses, we constrain the S3 mechanism in terms of bending angle, transmission angle, symmetry, and its existence, and then we optimize its dimensions using an interior-point method to make it compact. Compared with an existing waist mechanism, the proposed waist mechanism has only 47.8% of the weight and smaller dimensions, making it more lightweight and compact. Experiments on a robotic rat show that the proposed waist mechanism enables a robotic rat to perform rat-like upright rearing in 0.5s and tail grooming behavior in 0.4s, indicating its good biomimetic and dynamic performances. Comparisons between two generation robotic rats also reveal that the robot with new waist mechanism has similar (sometimes superior) pitching and bending abilities with the former one.

ジャーナルMechanism and Machine Theory
出版ステータスPublished - 2020 4月

ASJC Scopus subject areas

  • バイオエンジニアリング
  • 材料力学
  • 機械工学
  • コンピュータ サイエンスの応用


「Design and optimization of a lightweight and compact waist mechanism for a robotic rat」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。