Design guidelines of the single-point auto-ignition engine based on supermulti-jets colliding for high thermal efficiency and low noise: Obtained by computational experiments for a small strongly-asymmetric double-piston engine

Ken Naitoh*, Takuma Okamoto, Tomoaki Kubota, Kan Yamagishi, Yoshiyuki Nojima, Taro Tamura

*この研究の対応する著者

研究成果: Conference article査読

13 被引用数 (Scopus)

抄録

An inexpensive, lightweight, and relatively quiet engine reactor that has the potential to achieve thermal efficiency over 50% for small engines was proposed in our previous reports, which is achieved with colliding supermulti-jets that create air insulation to encase burned gas around the chamber center, avoiding contact with the chamber walls and piston surfaces. The colliding of pulse jets can maintain high pressure ratio for various air-fuel ratios, whereas traditional homogeneous compression engines due to piston cannot get high pressure ratio at stoichiometric condition. Emphasis is also placed on the fact that higher compression in this engine results in less combustion noise because of encasing effect. Here, a small prototype engine having supermulti-jets colliding with pulse and strongly-asymmetric double-piston system is examined by using computational experiments. Pulse can be generated by the double piston system of a short stroke of about 40mm. Computations at some loads and engine speeds show a potential of high thermal efficiency over 60%, because there is very less heat loss on combustion chamber and piston surface. Design guidelines on the number of jets colliding and the size ratio of bore size and jet diameter are also shown in this report.

本文言語English
ジャーナルSAE Technical Papers
2014-November
DOI
出版ステータスPublished - 2014 11月 11
イベントSAE/JSAE 2014 20th Annual Small Engine Technology Conference and Exhibition, SETC 2014 - Pisa, Italy
継続期間: 2014 11月 182014 11月 20

ASJC Scopus subject areas

  • 自動車工学
  • 安全性、リスク、信頼性、品質管理
  • 汚染
  • 産業および生産工学

フィンガープリント

「Design guidelines of the single-point auto-ignition engine based on supermulti-jets colliding for high thermal efficiency and low noise: Obtained by computational experiments for a small strongly-asymmetric double-piston engine」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル