Detecting electron-phonon coupling during photoinduced phase transition

Takeshi Suzuki*, Yasushi Shinohara, Yangfan Lu, Mari Watanabe, Jiadi Xu, Kenichi L. Ishikawa, Hide Takagi, Minoru Nohara, Naoyuki Katayama, Hiroshi Sawa, Masami Fujisawa, Teruto Kanai, Jiro Itatani, Takashi Mizokawa, Shik Shin, Kozo Okazaki


研究成果: Article査読

18 被引用数 (Scopus)


Photoinduced phase transitions have been intensively studied owing to the potential capability to control a material of interest in the ultrafast manner, which can induce exotic phases unable to be attained at equilibrium. However, the key mechanisms are still under debate, and it is currently a central issue as to how the couplings between the electron, lattice, and spin degrees of freedom are evolving during photoinduced phase transitions. Here, we use a recently developed analysis method, which we call frequency-domain angle-resolved photoemission spectroscopy (FDARPES), and reveal mode- and band-selective electron-phonon couplings during the photoinduced insulator-to-metal transition for Ta2NiSe5. We find that the lattice modulation corresponding to the 2 THz phonon mode, where the Ta lattice is sheared along the a axis, is the most relevant for the emergence of photoinduced semimetallic state. Furthermore, we find that the semimetallic and semiconducting bands coexist in the transient state, and demonstrate that FDARPES spectra can selectively detect the phonon-specific couplings to the two coexistent band structures during the photoinduced phase transition by resolving them in the frequency domain.

ジャーナルPhysical Review B
出版ステータスPublished - 2021 3月 10

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学


「Detecting electron-phonon coupling during photoinduced phase transition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。