Detection accuracy of network anomalies using sampled flow statistics

Ryoichi Kawahara*, Keisuke Ishibashi, Tatsuya Mori, Noriaki Kamiyama, Shigeaki Harada, Haruhisa Hasegawa, Shoichiro Asano

*この研究の対応する著者

研究成果: Article査読

5 被引用数 (Scopus)

抄録

We investigated the detection accuracy of network anomalies when using flow statistics obtained through packet sampling. Through a case study based on measurement data, we showed that network anomalies generating a large number of small flows, such as network scans or SYN flooding, become difficult to detect during packet sampling. We then developed an analytical model that enables us to quantitatively evaluate the effect of packet sampling and traffic conditions, such as anomalous traffic volume, on detection accuracy. We also investigated how the detection accuracy worsens when the packet sampling rate decreases. In addition, we show that, even with a low sampling rate, spatially partitioning monitored traffic into groups makes it possible to increase detection accuracy. We also developed a method of determining an appropriate number of partitioned groups, and we show its effectiveness.

本文言語English
ページ(範囲)513-535
ページ数23
ジャーナルInternational Journal of Network Management
21
6
DOI
出版ステータスPublished - 2011 11月
外部発表はい

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Detection accuracy of network anomalies using sampled flow statistics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル