TY - GEN
T1 - Development of a robot which can simulate swallowing of food boluses with various properties for the study of rehabilitation of swallowing disorders
AU - Noh, Yohan
AU - Segawa, Masanao
AU - Wang, Chunbao
AU - Ishii, Hiroyuki
AU - Solis, Jorge
AU - Takanishi, Atsuo
AU - Katsumata, Akitoshi
AU - Iida, Yukihiro
PY - 2011/12/1
Y1 - 2011/12/1
N2 - Many patients suffer from swallowing disorders (dysphagia). There are many treatments for these disorders, such as swallowing therapy, surgery, and dietary modification. In our study, we focuse on dietary modification, a common approach. Normally, the swallowing is affected by food bolus properties such as hardness, stickiness and rheological characteristics, and dietary modifications can prevent swallowing disorder patients from suffering dysphagia (aspiration), as well as promote good nutrition. Based on these facts, our goal is to find foods which do not cause dysphagia, and develop food for swallowing disorder patients accordingly. Therefore, we are proposing an in-vitro Dynamic VFSS (Video Fluorographic Swallowing Study) simulation system which uses advanced robotics technology to mimic the dynamic process of swallowing and monitors the status and movement of the food bolus inside the system, for objective evaluation of the swallowing process. The dynamic VFSS simulation system consists of a head, mandible, neck, tongue, pharynx, and larynx which reproduce human anatomy. It is driven by 16 actuators with wire driving mechanisms. In this paper, we will present the dynamic VFSS simulation unit in detail. In addition, we will detail a set of the experiments carried out to determine whether food bolus properties can affect dysphagia or not. To observe the movement of the food bolus, we use a Video Fluoroscopy (VF) unit. The results of the experiments show that thickened boluses have a tendency to leave residue in the epiglottic vallecula. In contrast, liquids cause less residue, and increase the risk of dysphagia (aspiration). Moreover, this study shows that the frontal image, as well as the lateral image, is important for evaluating residual food in the oral-pharyngeal space.
AB - Many patients suffer from swallowing disorders (dysphagia). There are many treatments for these disorders, such as swallowing therapy, surgery, and dietary modification. In our study, we focuse on dietary modification, a common approach. Normally, the swallowing is affected by food bolus properties such as hardness, stickiness and rheological characteristics, and dietary modifications can prevent swallowing disorder patients from suffering dysphagia (aspiration), as well as promote good nutrition. Based on these facts, our goal is to find foods which do not cause dysphagia, and develop food for swallowing disorder patients accordingly. Therefore, we are proposing an in-vitro Dynamic VFSS (Video Fluorographic Swallowing Study) simulation system which uses advanced robotics technology to mimic the dynamic process of swallowing and monitors the status and movement of the food bolus inside the system, for objective evaluation of the swallowing process. The dynamic VFSS simulation system consists of a head, mandible, neck, tongue, pharynx, and larynx which reproduce human anatomy. It is driven by 16 actuators with wire driving mechanisms. In this paper, we will present the dynamic VFSS simulation unit in detail. In addition, we will detail a set of the experiments carried out to determine whether food bolus properties can affect dysphagia or not. To observe the movement of the food bolus, we use a Video Fluoroscopy (VF) unit. The results of the experiments show that thickened boluses have a tendency to leave residue in the epiglottic vallecula. In contrast, liquids cause less residue, and increase the risk of dysphagia (aspiration). Moreover, this study shows that the frontal image, as well as the lateral image, is important for evaluating residual food in the oral-pharyngeal space.
UR - http://www.scopus.com/inward/record.url?scp=84862821358&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862821358&partnerID=8YFLogxK
U2 - 10.1109/ICRA.2011.5980134
DO - 10.1109/ICRA.2011.5980134
M3 - Conference contribution
AN - SCOPUS:84862821358
SN - 9781612843865
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 4676
EP - 4681
BT - 2011 IEEE International Conference on Robotics and Automation, ICRA 2011
T2 - 2011 IEEE International Conference on Robotics and Automation, ICRA 2011
Y2 - 9 May 2011 through 13 May 2011
ER -