TY - GEN
T1 - Development of attachable tele-echography robot by a bystander at injury scene
AU - Ito, Keiichiro
AU - Sugano, Shigeki
AU - Iwata, Hiroyasu
PY - 2010/11/29
Y1 - 2010/11/29
N2 - This paper reports a wearable tele-echography robot that a bystander could attach to a patient at injury scene. Quick diagnosis and treatment are important for patients who have shock by internal bleeding. Therefore, focused assessment with sonography for trauma (FAST), which is a simple and quick diagnostic method, was developed as a first lifesaving step in a hospital. However, a shock patient has little time, and transportation to a hospital may take too long. Therefore, a system which enables FAST at injury scene by assistance of bystander is important. First, we constructed a medical treatment scenario from the victim's discovery to FAST and treatment at the injury scene. Then, we developed a remote-controlled FAST robot that a bystander could attach to a patient. This robot is attached to each roughly FAST areas of patient body by a bystander and remotely fine-tuned position by a doctor in a hospital. In this way, a bystander may not do an exact positioning. In addition, the robot has two springs to generate contact force between echo probe and patient body surface. This mechanism not only fit in patient body motion but also downsizing based on reducing the number of controlled axis. To confirm the effectiveness of the robot, we performed experiments with some examinees and doctors. We confirmed effectiveness of the mechanism and that a bystander could attach the robot to each roughly FAST areas of patient body. We also confirmed that a doctor could do FAST with the robot by remote-controlled on the roughly FAST areas in approximately three minutes. These results show that the robot would enable FAST at injury scene by assistance of bystander, and FAST would be faster than the time required transporting the patient to the hospital with the robot. This is effective in improving the survival rate for traumatic shock patients.
AB - This paper reports a wearable tele-echography robot that a bystander could attach to a patient at injury scene. Quick diagnosis and treatment are important for patients who have shock by internal bleeding. Therefore, focused assessment with sonography for trauma (FAST), which is a simple and quick diagnostic method, was developed as a first lifesaving step in a hospital. However, a shock patient has little time, and transportation to a hospital may take too long. Therefore, a system which enables FAST at injury scene by assistance of bystander is important. First, we constructed a medical treatment scenario from the victim's discovery to FAST and treatment at the injury scene. Then, we developed a remote-controlled FAST robot that a bystander could attach to a patient. This robot is attached to each roughly FAST areas of patient body by a bystander and remotely fine-tuned position by a doctor in a hospital. In this way, a bystander may not do an exact positioning. In addition, the robot has two springs to generate contact force between echo probe and patient body surface. This mechanism not only fit in patient body motion but also downsizing based on reducing the number of controlled axis. To confirm the effectiveness of the robot, we performed experiments with some examinees and doctors. We confirmed effectiveness of the mechanism and that a bystander could attach the robot to each roughly FAST areas of patient body. We also confirmed that a doctor could do FAST with the robot by remote-controlled on the roughly FAST areas in approximately three minutes. These results show that the robot would enable FAST at injury scene by assistance of bystander, and FAST would be faster than the time required transporting the patient to the hospital with the robot. This is effective in improving the survival rate for traumatic shock patients.
UR - http://www.scopus.com/inward/record.url?scp=78649257366&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78649257366&partnerID=8YFLogxK
U2 - 10.1109/ICMA.2010.5588573
DO - 10.1109/ICMA.2010.5588573
M3 - Conference contribution
AN - SCOPUS:78649257366
SN - 9781424451418
T3 - 2010 IEEE International Conference on Mechatronics and Automation, ICMA 2010
SP - 1270
EP - 1275
BT - 2010 IEEE International Conference on Mechatronics and Automation, ICMA 2010
T2 - 2010 IEEE International Conference on Mechatronics and Automation, ICMA 2010
Y2 - 4 August 2010 through 7 August 2010
ER -