抄録
The operation of high-performance diamond MESFETs using thin p-type surface semiconductive layers of undoped hydrogen-terminated CVD diamond films has been simulated. We have used diffusion profiles of shallow acceptors to describe the surface conductive layer. In order to describe metal/hydrogen/diamond interfaces, we have assumed an incomplete contact model where an atomic scale gap (∼0.5 nm) is inserted between the metal and the diamond. The results of this model have been compared with those obtained from direct metal/diamond contact model. The experimental I-V characteristics have been realized with acceptor density of 1 × 1013 cm-2, and the transconductance per unit gate width of diamond MESFETs with 1 μm gate length is predicted to be nearly 50 mS mm-1 by using both complete and incomplete contact models.
本文言語 | English |
---|---|
ページ(範囲) | 865-868 |
ページ数 | 4 |
ジャーナル | Diamond and Related Materials |
巻 | 6 |
号 | 5-7 |
DOI | |
出版ステータス | Published - 1997 4月 |
ASJC Scopus subject areas
- 電子材料、光学材料、および磁性材料
- 化学 (全般)
- 機械工学
- 材料化学
- 電子工学および電気工学